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1. THE LANGUAGE OF QUASI-CATEGORIES

We will use the of quasi-categories developed by Joyal and Lurie. See for instance the book
Higher Topos Theory [Lurog].

Definition 1. A quasi-category is a simplicial set C so that any diagram of the form

Alln] — C
Aln]
for 0 <i < n has a lift.

One of the advantage of this model of (oo, 1)-category is that, for any two quasi-categories C and
D, the simplicial internal hom [C,D] is a quasi-category which represents the "infinity-category of
functors from C to D".

Definition 2. An adjunction is the data of funétors L : C — D and R: D — C together with a mor-
phism 11: Id¢ = RoL in [C,C] so that for any objet X of C and any obje&t Y of D, the composition

homp (L(X),Y) — homc (RL(X), R(Y)) — homc (X, R(Y))
is an equivalence of co-groupoids.

Remark 1. Lurie fir§t defines an adjunétion as a funétor A : G — A[1] which is both a cartesian
and a cocartesian fibration.

Definition 3. An objeét X of an quasi-category C is initial if for any obje& Y, hom¢ XY is con-
tractible. It is final if for any object Y, hom¢ YX is contradtible.

Let K be a simplicial set. We denote respectively by K* and K” the cone and the cocone of K.

Definition 4. let D : K — C be a diagram in a quasi-category C. If it exi$ts, a colimit of D is an
initial objeét in the quasi-category

Cpy = [K*, C] xk,c] {D}-

2. TorPos THEORY

The goal of this section is to recall some topos theory.
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2.1. Grothendieck topology.

Definition 5. A sieve on an objet X of a small category A is a subobjeét of X in the category
PSh (A) of presheaves on A.

Definition 6. A Grothendieck topology T on a small category A is the data of, for any obje¢t X, a
collection Cov(X) of sieves on X called the covering sieves of X, so that

e (Base change) for any morphism f : X — Y and any S € Cov(X), the pullback f*S of S
along f in the category PSh (A) is a covering sieve of Y;

e (Local charalter) let S be a covering sieve of X and let T be any sieve of X ; if for any Y € A
and any morphism f € S(Y) C homa (Y, X) f*T is a covering sieve of Y, then T is a covering
sieve of X;

o (Identity) The sieve X is a covering sieve of X.

A site (A, 1) is the data of a small category A and of a Grothendieck topology T on A.

Definition 7. Let (A, ) be a site. A sheaf on A is a presheaf F € PSh(A) so that for any covering
sieve U of X € A the map

F(X) = hompgp(a) (X, F) = hompspa) (U, F)
is an isomorphism.
Definition 8. Let F be a presheaf on a site (A, t). Then, the plus con§tru&ion F' of F is the presheaf
defined by
F'(X) = colimg_,xF(S)
where the colimit is taken over the poset of covering sieves of X. This defines the endofunctor f

of PSh (A).

For a presheaf, Ff is not in general a sheaf but only a separated presheaf, meaning that the map
Ft(X) —» hompgp ) (U, FT) is a monomorphism for any covering sieve U of X. However Ff is a
sheaf. This is aCtually the close$t sheaf to F.

Proposition 1. The funétor t o t with values in sheaves is left adjoint to the inclusion funcétor form
sheaves to presheaves.

2.2. Left exact localisations of a presheaves category.

Definition 9. A left exact localisation of a presheaf category is the data of a category C together
with a small category A and an adjun&tion

PSh (A) ﬁ ¢
R

so that R is fully faithful and L is left exa&, that is commutes with finite limits.

Proposition 2. In the adjunction above, the funétor i is accessble. Hence, C is in particular an accessible
localisation of a presheaves category; that is a presentable category.

2.3. Giraud axioms.

Definition 10. A category C satisfies the Giraud’s axioms if

(1) Cis presentable;
(2) colimits in C are universal;
(3) unions are disjoint;
(4) equivalence relations are effective.
Some of the points above need some explanation.
e The point (2) means that for any morphism f : S — T, the functor — x1 S from C,r to C/g
preserves colimits. Heuri$tically, one may think of the bifunétor — xt — as a produét and

of colimits as sums. Hence, this conditions corresponds to the bilinearity of the product.
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e The point (3) means that for any two obje(ts, the square

0 — X
L
Y — XUuY.

e The point (4) needs more explanation.

Definition 11. An equivalence relation in a category C is the data of two objets X and R together
with a morphims R — X x X so that, for any object Y, the function

hom¢ (Y,R) — hom¢ (Y, X x X) = hom¢ (Y, X) x hom¢ (Y, X)
defines functorially an equivalence relation on the set homc (Y, X).

Definition 12. An equivalence relation is said to be effective of the morphism R — X xyx,g X is an
isomorphism.

2.4. Definition of a topos.
Definition 13. A topos is a category equivalent to the category of sheaves on a site (A, 1).
Theorem 1. A category is a topos if and only if it is a left exact localisation of a presheaves category.

Remark 2. This means in particular that the funétor 1ot is left exaét. One may think that § is left
exact. But that would implies that any category of separated presheaves is a topos.

Theorem 2. A category is a topos if and only if it satisfies Giraud’s axioms.
Definition 14. Let T and T’ be two topoi. A geometric morphism f from T to T’ is a functor
fT->T
which preserves colimits and is left exa¢t. Hence, it has a right adjoint usually denoted f..
Definition 15. A point of a topos T is a geometric morphism
x:Set—T.

One says that T has enough points if for any morphism f : X — Y in T, the two following condi-
tions are equivalent

e f is an isomorphism;

e for any point x of T, the fun&tion x*(f) is bijetive.

3. FROM TOPOS THEORY TO INFINITY-TOPOS THEORY
In this seCtion, we generalise the definition given above the context of infinity categories.
Noration. From now on, for any small co-category A, PSh(A) will denote the co-category
PSh(A) = [A°P,S],
where S is the co-category of co-groupoids.
3.1. Grothendieck topology.

Definition 16. A monomorphism in an co-category C is a morphism f : X — Y so that for any
object Z € C the morphism of co-groupoids

homc(Z, f) : hom¢ (Z,X) - hom¢ (Z,Y)

is an equivalence on the connected components and induces an injection between the conneéted
components.

Given that definition of a monomorphism, the definition of a Grothendieck topology extends
easily to the "Higher context":
e A sieve of an obje¢t X of a small co-category A is a presheaf U € PSh(A) together with a
monomorphism U — X.
e A Grothendieck topology is the data of colle¢tions of covering sieves on any objelts X € A
that satisfies the base change axiom, the local charaéter axiom and the identity axiom.
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e A oo-site is a small co-category equipped with a Grothendieck topology.
e A sheaf on an oco-site (A, ) is a presheaf F so that for any objet X and any covering sieve
U of X, the morphism

F(X) = hompgpa) (X, F) = hompgpa) (U, F)
is an equivalence.

Proposition 3. The set of Grothendieck topologies on A is in bijection with the set of Grothendieck
topologies on Ho(A).

Idea of the proof. A sieve of an obje¢t X may also be described a a full subcategory U of A x so that,
for any morphism B — B’ in A/, if B’ is in U, then B is U. O

3.2. Higher Giraud’s axiom.

Definition 17. An co-category C satisfies the higher Giraud’s axioms if

(1) Cis presentable;

(2) colimits in C are universal;
(3) unions are disjoint;

(4) groupoids are effeltive.

The points (1), (2) and (3) are §traightforward generalisations of the 1-categorical setting. Let
us explain the meaning of the point (4).

Definition 18. We will say that a simplicial obje¢t U: A°’P — C in an co-category C is a groupoid
object if, for any decomposition [n] = SUS’ with SN S’ = {s}, the following diagram is a pullback

U([n]) — U(S)

l
U(s

U(S’) —— Uls).

In particular we get a composition
d
U([L]) xy(gop U([1D) = U([2]) = U([1))
Moreover, we get left inverses
U([1]) = U(1 < 2) xy(2) U(2) = U(1 < 2) xy(2) U(0< 2) ~U(0< 1 <2) - U(0 < 1).

Definition 19. We will say that an augmented simplicial obje& U* : A® — C in an co-category
C is a Cech nerve if, its re§triction to A°P is a groupoid obje& and if the following diagram is a
pullback

U*([1]) —— u*([o])
Ur([0]) — U*([-1)).

Lemma 1. The funétor U* is a Ceck nerve if and only if it is a right Kan extension of its restriction to
the full subcategory spanned by [-1] and [0].

Definition 20. A groupoid objec in C is effetive if it extends AS® by colimit to a Cech nerve .

3.3. Higher topoi. The easie§t way to extend to the infinity-categorical context the definition of
a topos is to extend the "left exat localisation" definition.

Definition 21. An oco-topos C is an accessible left exact localization of a presheaves category. In
other there exi$ts an small category A and an adjun&tion

PSh(A) ﬁ C
R

so that R is fully faithful and L is left exact and accessible.
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ReMARK 3. Notice that there is a an additional condition compared to the 1-categorical world: R
needs to be accessible. This ensures a topos to be presentable and was a proposition in this world.

Definition 22. Let T and T’ be two co-topoi. A geometric morphism f from T to T’ is a funétor
f T T

which preserves colimits and is left exa&. Hence, it has a right adjoint usually denoted f..

Theorem 3. A category C is a topos if and only if it satisfies higher Giraud’s axioms.

To compare oco-topoi to categories of sheaves on a co-site, we will need to study with more
details accessible left exact localisations. We will see that such categories of sheaves corresponds
to a sub class of such localisations called topological localisations.

4. REFLECTIVE SUBCATEGORIES

4.1. Local objeéts and morphisms.

Definition 23. A refletive subcategory of an co-category C is an co-adjunction

L

Cz—/——=D
R

so that R is a full faithful embedding.

The main idea underlying the treatment of refletive subcategories is that it is determined by
the set of morphisms f € Dy so that L(f) is an equivalence.

Definition 24. Let S C C; be a set of morphisms of an co-category C. Then we say that an object
X of Cis a S-local if for any morphism f : U — V in S the map

homc (f, X) : hom¢ (V, X) — hom¢ (U, X)
is an equivalence of co-groupoids. We denote by S —loc the set of S-local objects.
Definition 25. A morphism f : U — V if Cis a S-equivalence if for any S-local objet X, the map
homc (f,X): homc (V,X) - hom¢ (U, X)
is an equivalence of co-groupoids. We denote by S —eq the set of S-equivalences.
In particular, S C S —eq.

Proposition 4. Consider a reflective subcategory C of an co-category D. Let S = L~!(eq). Then the
funétor R : C — D induces an equivalence between C and the full subcategory of D on S-local obje(ts.
Moreover, any S-equivalence is in S.

Proof. 1t is clear that an objet in the image of R is S-local. Conversely, for any objet X of D, the
counit map n(X) : X = i oa(X) isin S. If X is S-local, then the map

homp (1(X), X) : homp (R o L(X), X) — homp (X, X)

is an equivalence. Let us choose f : Ro L(X) — X so that f o n(X) ~ Idx. Since f is also in S, and
since R o L(X) is S-local then the map, applying

homp (f,R o L(X)) : homp (X, R o L(X)) = homp (R o L(X),R o L(X))
is an equivalence. Let us choose g : X — Ro L(X) so that go f ~ Idgorx). Then
g§~go fonX)~nX).

So f is inverse to #(X). So X is equivalent to R o L(X) and so is in the essential image of R. O
Corollary 1. If D is continuous, then so is C.
Proof. The limit of a diagram of S-local objects is S-local. O
Proposition 5. If D is cocontinuous, then so is C.
Proof. Consider a diagram D : I — C. Then, we have a sequence of equivalences

homgyn 1,c) (D, X) = homgyy 1,p) (R 0 D, R(X)) =~ homp (colim(R o D), R(X))

~homc (L(colim(R o D)), X).

This shows that L(colim(R o D)) = colimD. O
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4.2. Strongly saturated set of morphisms.

Definition 26. A set S of morphisms in an co-category D is §trongly saturated if

e it is §table under colimits in [A[1],D];
e it is Stable under pushout in D;
e it satisfies the 2-out-of-3 rule.

Definition 27. Let S C D; be a set of morphisms. The §trongly saturated set of morphisms S
generated by S is the smallest Strongly saturated set of morphisms that contains S.

Proposition 6. [Lurog, 5.5.4.15] Let S be a small set of morphisms of a presheaves category D =
PSh(A), and let R : C — D the full subcategory of S-local objelts. Then, R has a left adjoint L. Moreover,

S=S-eq= L_l(eq).

Idea of the proof. The main ingredient of the proof is to build, for any objet X of D, a morphism
f:X—>Yin S so that Y is S-local.

Finally, let us show that a morphism f : X — Y in L7!(eq) is also in S. Consider the following
square

RL(X) 77 RL(Y)

Since the vertical arrows belong to S and since the bottom arrow is an equivalence, hence belongs
to S, then f belongs to S by the 2-out-of-3 rule. O

4.3. Additional conditions. In this setion, we consider a category of presheaves C = PSh(A) and
a refleCtive subcategory

L
CFD.

Moreover, we denote S = L™!(eq).
Proposition 7. The functor L is preserves finite limits if and only if S is stable under pullback.

Sketch of the proof. If L preserves limits, then it is clear that S is Stable under pullback. Conversely,
suppose that S is stable under pullbacks. Since the final object of D is S-local, then L preserves
the final objet. Moreover, let us consider a span X — Y « Z. We can write the morphism
X xy Z — RL(X) xgr(y) RL(Z) as the composition

X Xy Z—X XRL(Y) Z—X XRL(Y) RL(Z) — RL(X) XRL(Y) RL(Z)

The two last maps are pullbacks of elements of S so are in S. The first map is a pullback of the
diagonal map Y — Y xgy(y) Y which has a left inverse given by the projection on the first factor.
This projection is in S as a pullback of Y — RL(Y). So the morphism X xy Z — RL(X) xgry) RL(Z)
is in S which shows that

RL(X xy Z) = RL(X) xg1(y) RL(Z).

Proposition 8 (5.5.1.2 and 5.5.4.2). The following conditions are equivalent

e the funcétor R is accessible (hence D is presentable);
e S =S5y —eq forasmall set Sy.

In this context, we have moreover, S = Sj.
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4.4. Topological localisation and sheaves topoi.

Definition 28. A reflective subcategory L 4 R is called topological if it S is §table under pullbacks
and S =S for a small set Sy of monomorphisms.

Corollary 2. A topological localisation is accessible.

Proposition 9. Let (A, t) be an co-site. Then, the inclusion of sheaves into presheaves is a topologocal
reflective subcategory. Moreover, this induces a bijetion between Grothendieck topologies on A and
topologocal reflective subcategories of PSh(A).

Proof. Consider a Grothendieck topology on A. Then, the sheaves are ju§t the Sy-local objelts
where Sy is the set of monomorphisms U — X for any object X of A and any covering sieve U of X.
Then, by Proposition [6} the inclusion of sheaves into presheaves is a reflective subcategory. It is
clear that it is topological. This gives us a funtion from Grothendieck topologies to topological
localisations. It is injective (any Grothendieck topology is determined by its set of sheaves). Let us
show that it is surje&tive. Consider a topologocal localisation S of PSh(A) and a set of monomor-
phisms Sy so that S = S;. Let f : F — G be a morphism in S;. For any object X in A and any
morphism X — G, the morphism X xg F — X is a monomorphism. As G is a colimit of A/, one
can show that f is the colimit of the diagram

A/ = [A[1], PSh(A)]

X' (XxgF—X).
Such morphism X xg F — X for any f € Sp and any X € A/g gives us the basis of a Grothendieck
topology whose sheaves will be exatly the S-local presheaves. O

5. HyPERCOMPLETE TOPOI
5.1. Effective epimorphisms. In this se¢tion, we are working inside a topos T.

Definition 29. The Cech nerve of a morphism f : X — Y is the Cech nerve C(f): AJ* — T given
by

CH)([n]) = X xy Xxy -+ xy X,

Cf)[n-1)=Y.
Definition 30. An effective epimorphism is a morphism f so that C(f) is the extension by colimit
of its re§tricion to AJF.

Notice that there is a one to one correspondance between groupoids (that are effective) and
effe@tive epimorphisms.

5.2. Homotopy groups. Let A be a small co-category and let F be a presheaf on A.
Definition 31. The nt"-homotopy group of F is the presheaf on A given by

F
A°P S — Set

Definition 32. 7, (X) = 1o(X5 — X). 7,(f) is the 1, of the objet f : X — Y in the co-category T y.

Definition 33. An morphism is co-connedtive if it is an effective epimorphism and if m,(f) =~ = for
any n.

5.3. Hypercomplete topos.

Definition 34. An obje¢t of a topos T is called hypercomplete if it is local with respe&t to oo-
conneéted morphisms. We denote by T” the full subcategory of hypercomplete objelts.

Lemma 2. The set of co-connected morphisms is Strongly saturated, of small generation and $table
under pullbacks.

Idea of the proof. The full subcategory of [A[1],T] spanned by oco-conneéted morphisms is pre-
sentable. 0

Corollary 3. The inclusion T — T is part of a left exalt accessible localisation. Hence, T" is an
oo-topos.

The con$truction T — T” is also fun&orial.
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5.4. Hypercoverings.

Definition 35. A simplicial object U on a topos T is an hypercovering if for any natural integer n,
the map

U, — cosk,, U
is an effetive epimoprhism.
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