AN INTRODUCTION TO INFINITY TOPOI

BRICE LE GRIGNOU

Contents

1.	The language of quasi-categories	1
2.	Topos theory	1
3.	From topos theory to infinity-topos theory	3
4.	Reflective subcategories	5
5.	Hypercomplete topoi	7
References		8

1. The language of quasi-categories

We will use the of quasi-categories developed by Joyal and Lurie. See for instance the book Higher Topos Theory [Luro9].

Definition 1. A quasi-category is a simplicial set C so that any diagram of the form

$$\begin{array}{c} \Lambda^{i}[n] \longrightarrow \mathsf{C} \\ \downarrow \\ \Delta[n] \end{array}$$

for 0 < i < n has a lift.

One of the advantage of this model of $(\infty, 1)$ -category is that, for any two quasi-categories C and D, the simplicial internal hom [C,D] is a quasi-category which represents the "infinity-category of functors from C to D".

Definition 2. An adjunction is the data of functors $L : C \to D$ and $R : D \to C$ together with a morphism $\eta : Id_C \to R \circ L$ in [C, C] so that for any object X of C and any object Y of D, the composition

 $hom_{D}(L(X), Y) \rightarrow hom_{C}(RL(X), R(Y)) \rightarrow hom_{C}(X, R(Y))$

is an equivalence of ∞ -groupoids.

Remark 1. Lurie first defines an adjunction as a functor $A : G \rightarrow \Delta[1]$ which is both a cartesian and a cocartesian fibration.

Definition 3. An object X of an quasi-category C is initial if for any object Y, $hom_C XY$ is contractible. It is final if for any object Y, $hom_C YX$ is contractible.

Let K be a simplicial set. We denote respectively by K^{\triangleleft} and K^{\triangleright} the cone and the cocone of K.

Definition 4. let $D: K \to C$ be a diagram in a quasi-category C. If it exists, a colimit of D is an initial object in the quasi-category

$$\mathsf{C}_{\mathrm{D}/} = \left[\mathsf{K}^{\triangleright},\mathsf{C}\right] \times_{\left[\mathsf{K},\mathsf{C}\right]} \{\mathsf{D}\}$$

2. Topos theory

The goal of this section is to recall some topos theory.

Date: February 15, 2019.

2.1. Grothendieck topology.

Definition 5. A sieve on an object X of a small category A is a subobject of X in the category PSh(A) of presheaves on A.

Definition 6. A Grothendieck topology τ on a small category A is the data of, for any object X, a collection Cov(X) of sieves on X called the covering sieves of X, so that

- (Base change) for any morphism $f : X \to Y$ and any $S \in Cov(X)$, the pullback f^*S of S along f in the category PSh(A) is a covering sieve of Y;
- (Local character) let S be a covering sieve of X and let T be any sieve of X; if for any Y ∈ A and any morphism f ∈ S(Y) ⊂ hom_A(Y,X) f*T is a covering sieve of Y, then T is a covering sieve of X;
- (Identity) The sieve X is a covering sieve of X.

A site (A, τ) is the data of a small category A and of a Grothendieck topology τ on A.

Definition 7. Let (A, τ) be a site. A sheaf on A is a presheaf $F \in PSh(A)$ so that for any covering sieve U of $X \in A$ the map

$$F(X) = hom_{PSh(A)}(X, F) \rightarrow hom_{PSh(A)}(U, F)$$

is an isomorphism.

Definition 8. Let F be a presheaf on a site (A, τ). Then, the plus construction F[†] of F is the presheaf defined by

$$F^{\dagger}(X) = \operatorname{colim}_{S \to X} F(S)$$

where the colimit is taken over the poset of covering sieves of X. This defines the endofunctor \dagger of PSh(A).

For a presheaf, F^{\dagger} is not in general a sheaf but only a separated presheaf, meaning that the map $F^{\dagger}(X) \rightarrow \hom_{PSh(A)}(U, F^{\dagger})$ is a monomorphism for any covering sieve U of X. However $F^{\dagger\dagger}$ is a sheaf. This is actually the closest sheaf to F.

Proposition 1. The functor $\dagger \circ \dagger$ with values in sheaves is left adjoint to the inclusion functor form sheaves to presheaves.

2.2. Left exact localisations of a presheaves category.

Definition 9. A left exact localisation of a presheaf category is the data of a category C together with a small category A and an adjunction

$$PSh(A) \xrightarrow{L} C$$

so that R is fully faithful and L is left exact, that is commutes with finite limits.

Proposition 2. *In the adjunction above, the functor i is accessble. Hence,* C *is in particular an accessible localisation of a presheaves category; that is a presentable category.*

2.3. Giraud axioms.

Definition 10. A category C satisfies the Giraud's axioms if

- (1) C is presentable;
- (2) colimits in C are universal;
- (3) unions are disjoint;
- (4) equivalence relations are effective.

Some of the points above need some explanation.

• The point (2) means that for any morphism $f : S \to T$, the functor $-x_T S$ from $C_{/T}$ to $C_{/S}$ preserves colimits. Heuristically, one may think of the bifunctor $-x_T - as$ a product and of colimits as sums. Hence, this conditions corresponds to the bilinearity of the product.

• The point (3) means that for any two objects, the square

• The point (4) needs more explanation.

Definition 11. An equivalence relation in a category C is the data of two objects X and R together with a morphims $R \rightarrow X \times X$ so that, for any object Y, the function

$$\operatorname{hom}_{C}(Y, \mathbb{R}) \to \operatorname{hom}_{C}(Y, X \times X) = \operatorname{hom}_{C}(Y, X) \times \operatorname{hom}_{C}(Y, X)$$

defines functorially an equivalence relation on the set $hom_{C}(Y, X)$.

Definition 12. An equivalence relation is said to be effective of the morphism $R \to X \times_{X/R} X$ is an isomorphism.

2.4. Definition of a topos.

Definition 13. A topos is a category equivalent to the category of sheaves on a site (A, τ) .

Theorem 1. A category is a topos if and only if it is a left exact localisation of a presheaves category.

Remark 2. This means in particular that the functor $\dagger \circ \dagger$ is left exact. One may think that \dagger is left exact. But that would implies that any category of separated presheaves is a topos.

Theorem 2. A category is a topos if and only if it satisfies Giraud's axioms.

Definition 14. Let T and T' be two topoi. A geometric morphism f from T to T' is a functor

$$f^*T' \rightarrow T$$

which preserves colimits and is left exact. Hence, it has a right adjoint usually denoted f_* .

Definition 15. A point of a topos T is a geometric morphism

$$x : \mathsf{Set} \to \mathsf{T}.$$

One says that T has enough points if for any morphism $f : X \to Y$ in T, the two following conditions are equivalent

- *f* is an isomorphism;
- for any point x of T, the function $x^*(f)$ is bijective.

3. From topos theory to infinity-topos theory

In this section, we generalise the definition given above the context of infinity categories.

NOTATION. From now on, for any small ∞-category A, PSh (A) will denote the ∞-category

$$PSh(A) = [A^{op}, S],$$

where S is the ∞ -category of ∞ -groupoids.

3.1. Grothendieck topology.

Definition 16. A monomorphism in an ∞ -category C is a morphism $f : X \to Y$ so that for any object $Z \in C$ the morphism of ∞ -groupoids

 $\operatorname{hom}_{C}(Z, f) : \operatorname{hom}_{C}(Z, X) \to \operatorname{hom}_{C}(Z, Y)$

is an equivalence on the connected components and induces an injection between the connected components.

Given that definition of a monomorphism, the definition of a Grothendieck topology extends easily to the "Higher context":

- A sieve of an object X of a small ∞-category A is a presheaf U ∈ PSh(A) together with a monomorphism U → X.
- A Grothendieck topology is the data of collections of covering sieves on any objects X ∈ A that satisfies the base change axiom, the local character axiom and the identity axiom.

- A ∞ -site is a small ∞ -category equipped with a Grothendieck topology.
- A sheaf on an ∞-site (A, τ) is a presheaf F so that for any object X and any covering sieve U of X, the morphism

$$F(X) = hom_{PSh(A)}(X, F) \rightarrow hom_{PSh(A)}(U, F)$$

is an equivalence.

Proposition 3. The set of Grothendieck topologies on A is in bijection with the set of Grothendieck topologies on Ho(A).

Idea of the proof. A sieve of an object X may also be described a a full subcategory U of $A_{/X}$ so that, for any morphism $B \rightarrow B'$ in $A_{/X}$, if B' is in U, then B is U.

3.2. Higher Giraud's axiom.

Definition 17. An ∞-category C satisfies the higher Giraud's axioms if

- (1) C is presentable;
- (2) colimits in C are universal;
- (3) unions are disjoint;
- (4) groupoids are effective.

The points (1), (2) and (3) are straightforward generalisations of the 1-categorical setting. Let us explain the meaning of the point (4).

Definition 18. We will say that a simplicial object $U : \Delta^{op} \to C$ in an ∞ -category C is a groupoid object if, for any decomposition $[n] = S \cup S'$ with $S \cap S' = \{s\}$, the following diagram is a pullback

$$U([n]) \longrightarrow U(S)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(S') \longrightarrow U(s).$$

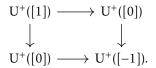
In particular we get a composition

$$\mathrm{U}([1]) \times_{\mathrm{U}([0])} \mathrm{U}([1]) \simeq \mathrm{U}([2]) \xrightarrow{u_1} \mathrm{U}([1]).$$

Moreover, we get left inverses

$$U([1]) \simeq U(1 < 2) \times_{U(2)} U(2) \rightarrow U(1 < 2) \times_{U(2)} U(0 < 2) \simeq U(0 < 1 < 2) \rightarrow U(0 < 1).$$

Definition 19. We will say that an augmented simplicial object $U^+ : \Delta^{op}_+ \to C$ in an ∞ -category C is a Cech nerve if, its restriction to Δ^{op} is a groupoid object and if the following diagram is a pullback



Lemma 1. The functor U^+ is a Ceck nerve if and only if it is a right Kan extension of its restriction to the full subcategory spanned by [-1] and [0].

Definition 20. A groupoid object in C is effective if it extends Δ^{op}_+ by colimit to a Cech nerve .

3.3. **Higher topoi.** The easiest way to extend to the infinity-categorical context the definition of a topos is to extend the "left exact localisation" definition.

Definition 21. An ∞ -topos C is an accessible left exact localization of a presheaves category. In other there exists an small category A and an adjunction

$$\operatorname{PSh}(A) \xrightarrow[R]{L} C$$

so that R is fully faithful and L is left exact and accessible.

REMARK 3. Notice that there is a an additional condition compared to the 1-categorical world: R needs to be accessible. This ensures a topos to be presentable and was a proposition in this world.

Definition 22. Let T and T' be two ∞ -topoi. A geometric morphism *f* from T to T' is a functor

$$f^*: \mathsf{T}' \to \mathsf{T}$$

which preserves colimits and is left exact. Hence, it has a right adjoint usually denoted f_* .

Theorem 3. A category C is a topos if and only if it satisfies higher Giraud's axioms.

To compare ∞ -topoi to categories of sheaves on a ∞ -site, we will need to study with more details accessible left exact localisations. We will see that such categories of sheaves corresponds to a sub class of such localisations called topological localisations.

4. Reflective subcategories

4.1. Local objects and morphisms.

Definition 23. A reflective subcategory of an ∞ -category C is an ∞ -adjunction

$$C \xrightarrow{L} D$$

so that R is a full faithful embedding.

The main idea underlying the treatment of reflective subcategories is that it is determined by the set of morphisms $f \in D_1$ so that L(f) is an equivalence.

Definition 24. Let $S \subset C_1$ be a set of morphisms of an ∞ -category C. Then we say that an object X of C is a S-local if for any morphism $f : U \to V$ in S the map

 $\operatorname{hom}_{\mathsf{C}}(f, X) : \operatorname{hom}_{\mathsf{C}}(\mathsf{V}, X) \to \operatorname{hom}_{\mathsf{C}}(\mathsf{U}, X)$

is an equivalence of ∞ -groupoids. We denote by S – loc the set of S-local objects.

Definition 25. A morphism $f : U \rightarrow V$ if C is a S-equivalence if for any S-local object X, the map

 $\operatorname{hom}_{C}(f, X) : \operatorname{hom}_{C}(V, X) \to \operatorname{hom}_{C}(U, X)$

is an equivalence of ∞ -groupoids. We denote by S – eq the set of S-equivalences.

In particular, $S \subset S - eq$.

Proposition 4. Consider a reflective subcategory C of an ∞ -category D. Let $S = L^{-1}(eq)$. Then the functor $R : C \to D$ induces an equivalence between C and the full subcategory of D on S-local objects. Moreover, any S-equivalence is in S.

Proof. It is clear that an object in the image of R is S-local. Conversely, for any object X of D, the counit map $\eta(X) : X \rightarrow i \circ a(X)$ is in S. If X is S-local, then the map

$$\operatorname{hom}_{D}(\eta(X), X) : \operatorname{hom}_{D}(R \circ L(X), X) \to \operatorname{hom}_{D}(X, X)$$

is an equivalence. Let us choose $f : \mathbb{R} \circ L(X) \to X$ so that $f \circ \eta(X) \sim Id_X$. Since f is also in S, and since $\mathbb{R} \circ L(X)$ is S-local then the map, applying

$$\operatorname{hom}_{D}(f, R \circ L(X)) : \operatorname{hom}_{D}(X, R \circ L(X)) \to \operatorname{hom}_{D}(R \circ L(X), R \circ L(X))$$

is an equivalence. Let us choose $g: X \to R \circ L(X)$ so that $g \circ f \sim Id_{R \circ L(X)}$. Then

$$g \sim g \circ f \circ \eta(X) \sim \eta(X)$$

So *f* is inverse to $\eta(X)$. So X is equivalent to $R \circ L(X)$ and so is in the essential image of R.

Corollary 1. If D is continuous, then so is C.

Proof. The limit of a diagram of S-local objects is S-local.

Proposition 5. If D is cocontinuous, then so is C.

Proof. Consider a diagram $D: I \rightarrow C$. Then, we have a sequence of equivalences

 $\operatorname{hom}_{\operatorname{Fun}(I,C)}(D,X) \simeq \operatorname{hom}_{\operatorname{Fun}(I,D)}(R \circ D, R(X)) \simeq \operatorname{hom}_{D}(\operatorname{colim}(R \circ D), R(X))$

 $\simeq \operatorname{hom}_{\mathsf{C}}(\operatorname{L}(\operatorname{colim}(\operatorname{R} \circ \operatorname{D})), \operatorname{X}).$

This shows that $L(colim(R \circ D)) = colimD$.

4.2. Strongly saturated set of morphisms.

Definition 26. A set S of morphisms in an ∞ -category D is strongly saturated if

- it is stable under colimits in $[\Delta[1], D]$;
- it is stable under pushout in D;
- it satisfies the 2-out-of-3 rule.

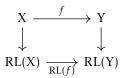
Definition 27. Let $S \subset D_1$ be a set of morphisms. The strongly saturated set of morphisms \overline{S} generated by S is the smallest strongly saturated set of morphisms that contains S.

Proposition 6. [Luro9, 5.5.4.15] Let S be a small set of morphisms of a presheaves category D = PSh(A), and let $R : C \rightarrow D$ the full subcategory of S-local objects. Then, R has a left adjoint L. Moreover,

$$\overline{S} = S - eq = L^{-1}(eq).$$

Idea of the proof. The main ingredient of the proof is to build, for any object X of D, a morphism $f : X \rightarrow Y$ in \overline{S} so that Y is S-local.

Finally, let us show that a morphism $f : X \to Y$ in $L^{-1}(eq)$ is also in \overline{S} . Consider the following square



Since the vertical arrows belong to \overline{S} and since the bottom arrow is an equivalence, hence belongs to \overline{S} , then *f* belongs to \overline{S} by the 2-out-of-3 rule.

4.3. Additional conditions. In this section, we consider a category of presheaves C = PSh(A) and a reflective subcategory

$$C \xrightarrow{L} D.$$

Moreover, we denote $S = L^{-1}(eq)$.

Proposition 7. The functor L is preserves finite limits if and only if S is stable under pullback.

Sketch of the proof. If L preserves limits, then it is clear that S is stable under pullback. Conversely, suppose that S is stable under pullbacks. Since the final object of D is S-local, then L preserves the final object. Moreover, let us consider a span $X \to Y \leftarrow Z$. We can write the morphism $X \times_Y Z \to RL(X) \times_{RL(Y)} RL(Z)$ as the composition

$$X \times_Y Z \to X \times_{RL(Y)} Z \to X \times_{RL(Y)} RL(Z) \to RL(X) \times_{RL(Y)} RL(Z)$$

The two last maps are pullbacks of elements of S so are in S. The first map is a pullback of the diagonal map $Y \rightarrow Y \times_{RL(Y)} Y$ which has a left inverse given by the projection on the first factor. This projection is in S as a pullback of $Y \rightarrow RL(Y)$. So the morphism $X \times_Y Z \rightarrow RL(X) \times_{RL(Y)} RL(Z)$ is in S which shows that

$$\operatorname{RL}(X \times_Y Z) \simeq \operatorname{RL}(X) \times_{\operatorname{RL}(Y)} \operatorname{RL}(Z).$$

Proposition 8 (5.5.1.2 and 5.5.4.2). *The following conditions are equivalent*

- *the functor* R *is accessible (hence* D *is presentable);*
- $S = S_0 eq$ for a small set S_0 .

In this context, we have moreover, $S = \overline{S}_0$.

7

4.4. Topological localisation and sheaves topoi.

Definition 28. A reflective subcategory $L \dashv R$ is called topological if it S is stable under pullbacks and $S = \overline{S}_0$ for a small set S_0 of monomorphisms.

Corollary 2. A topological localisation is accessible.

Proposition 9. Let (A, τ) be an ∞ -site. Then, the inclusion of sheaves into presheaves is a topologocal reflective subcategory. Moreover, this induces a bijection between Grothendieck topologies on A and topologocal reflective subcategories of PSh(A).

Proof. Consider a Grothendieck topology on A. Then, the sheaves are just the S₀-local objects where S₀ is the set of monomorphisms $U \rightarrow X$ for any object X of A and any covering sieve U of X. Then, by Proposition 6, the inclusion of sheaves into presheaves is a reflective subcategory. It is clear that it is topological. This gives us a function from Grothendieck topologies to topological localisations. It is injective (any Grothendieck topology is determined by its set of sheaves). Let us show that it is surjective. Consider a topologocal localisation S of PSh(A) and a set of monomorphisms S₀ so that $S = \overline{S}_0$. Let $f : F \rightarrow G$ be a morphism in S₀. For any object X in A and any morphism $X \rightarrow G$, the morphism $X \times_G F \rightarrow X$ is a monomorphism. As G is a colimit of A_{/G}, one can show that *f* is the colimit of the diagram

$$\begin{array}{l} \mathsf{A}_{/\mathrm{G}} \rightarrow [\Delta[1], \mathrm{PSh}\,(\mathsf{A})] \\ \mathrm{X} \mapsto (\mathrm{X} \times_{\mathrm{G}} \mathrm{F} \rightarrow \mathrm{X}). \end{array}$$

Such morphism $X \times_G F \to X$ for any $f \in S_0$ and any $X \in A_{/G}$ gives us the basis of a Grothendieck topology whose sheaves will be exactly the S-local presheaves.

5. Hypercomplete topoi

5.1. Effective epimorphisms. In this section, we are working inside a topos T.

Definition 29. The Cech nerve of a morphism $f : X \to Y$ is the Cech nerve $C(f) : \Delta^{op}_+ \to T$ given by

$$\begin{cases} C(f)([n]) = X \times_Y X \times_Y \dots \times_Y X, \\ C(f)([n-1]) = Y. \end{cases}$$

Definition 30. An effective epimorphism is a morphism f so that C(f) is the extension by colimit of its restriction to Δ_+^{op} .

Notice that there is a one to one correspondance between groupoids (that are effective) and effective epimorphisms.

5.2. **Homotopy groups.** Let A be a small ∞ -category and let F be a presheaf on A.

Definition 31. The n^{th} -homotopy group of F is the presheaf on A given by

$$A^{op} \xrightarrow{F} S \longrightarrow Set$$

Definition 32. $\pi_n(X) = \tau_0(X^{S_n} \to X)$. $\pi_n(f)$ is the π_n of the object $f : X \to Y$ in the ∞-category $\mathsf{T}_{/Y}$. **Definition 33.** An morphism is ∞-connective if it is an effective epimorphism and if $\pi_n(f) \simeq *$ for any *n*.

5.3. Hypercomplete topos.

Definition 34. An object of a topos T is called hypercomplete if it is local with respect to ∞ -connected morphisms. We denote by T[^] the full subcategory of hypercomplete objects.

Lemma 2. The set of ∞ -connected morphisms is strongly saturated, of small generation and stable under pullbacks.

Idea of the proof. The full subcategory of $[\Delta[1],T]$ spanned by ∞ -connected morphisms is presentable.

Corollary 3. The inclusion $T^{\wedge} \to T$ is part of a left exact accessible localisation. Hence, T^{\wedge} is an ∞ -topos.

The construction $\mathsf{T}\to\mathsf{T}^\wedge$ is also functorial.

5.4. Hypercoverings.

Definition 35. A simplicial object U on a topos T is an hypercovering if for any natural integer *n*, the map

 $U_n \rightarrow cosk_{\leq n-1}U$

is an effective epimoprhism.

References

[Luro9] Jacob Lurie, *Higher topos theory*, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009.

UTRECHT UNIVERSITEIT E-mail address: b.n.legrignou@uu.nl