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1 Introduction
The theory of model category was introduced by Quillen. It allows to build derived functors
in the context of non-abelian categories and to give an effective construction of the localiza-
tion of a category.

This talk relies mostly on the papers of Dwyer-Spalinski [DS] "Homotopy theories and
model categories", on the book "Model categories and their localization" by Philip S. Hirschhorn
[Hi] and on Mauro Porta’s and my work in the seminar "Autour de la géométrie algébrique
dérivée".

2 Model category
In this first section I introduce the first notions on model categories. The proofs can be
found in [DS, 3]

Definition 2.1. A model is a usual category M where are distinguished three classes of
morphisms: the weak equivalences W, the cofibrations Cof and the fibrations Fib which are
stable through composition, contains the identities and are such that:

M1 the category M has finite limits and finite colimits.

M2 if f and g are composable morphisms of M, then, if two of the three morphisms f , g
an fg are weak equivalences, then also is the third.

M3 a retract of a weak equivalence (resp. cofibration, fibration) is a weak equivalence
(resp. cofibration, fibration

M4 Given a commutative square:
A

f //

h
��

B

g

��
C

i
// D

there exists a lift
A

f //

h
��

B

g

��
C

>>

i
// D

whenever h is a cofibration and g is a fibration and one of the two is also a weak
equivalence.

M5 A morphism f can be factored in two ways f = pi:

(a) i is a cofibration and p an acyclic fibration (i.e an element of W ∩ Fib)
(b) i is an acyclic cofibration (i.e an element of W ∩ Cof) ans p a fibration

Remark 2.1. An object A is said fibrant if A → ∗ is a fibration (∗ is the final object). An
object is said cofibrant if ∅ → A is cofibrant.
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Definition 2.2. A cofibrant replacement of an object A is the data of a factorization ∅ →
QA → A of ∅ → A where the left map is a cofibration and the right map is a weak
equivalence.
A fibrant replacement of A is a factorization A → RA → ∗ where the left map is a weak
equivalence and the right map is a fibration.

Proposition 2.1 (DS,3). Let M a model category; then

1. Cofib is exactly the arrows which have the left lifting property with acyclic fibrations

2. Cofib ∩W is exactly the arrows which have the left lifting property with fibrations

3. Fib is exactly the arrows which have the right lifting property with acyclic cofibrations

4. Fib ∩W is exactly the arrows which have the right lifting property with cofibrations

Proposition 2.2 (DS,3). In a model category, fibrations are stable through pullback.

A
f //

h
��

B

g

��
C

i
// D

In other words, if i is a fibration then also is f . Acyclic fibrations have the same property.
Furthermore, cofibrations an acyclic cofibrations are stable through pushout.

We introduce now one of the most known model categories.
Example 2.1. 1. If A is an abelian category, let ChA,≥0 the category of nonnegatively

graded cochain complexes of A. It has a model structure defined by:

(a) the weak equivalences are the quasi-isomorphisms
(b) the cofibrations are the maps which are monomorphisms in each degre
(c) the fibrations are the maps which are epimorphisms in each degree and with

injective kernel

2. The category of nonnegatively graded A-chain complexes. It has a model structure
defined by:

(a) the weak equivalences are the quasi-isomorphisms
(b) the cofibrations are the maps which are monomorphisms in each degree and with

projective cokernel
(c) the fibrations are the maps which are epimorphisms in each degree

3. The category of topological spaces and continous maps Top can be given a model
structure:

(a) the weak equivalences are the weak homotopy equivalences
(b) the cofibrations are the retract of maps X → Y where Y is a CW-complex.
(c) the fibrations are the Serre fibrations

4. The category of simplicial sets can be given a model structure such that:

(a) the weak equivalences are the weak homotopy equivalences
(b) the fibrations are the Kan fibrations

3 Homotopy
In this section, M is a model category.
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3.1 Left homotopy
Definition 3.1. Let A be an object of M. One calls cylinder object of A the data of a
composition of morphisms:

A
⊔
A→ CA → A (1)

which factors idA + idA and such that the right map is a weak equivalence. It is said :
1. good if A

⊔
A→ CA is a cofibration.

2. very good if it is good and CA → A is an (acyclic) fibration.
Definition 3.2. Let f : A → B be an arrow of a model category M. A left homotopy
from f to g is the data of a cylinder object of A and a map H : CA → B which factors
f + g : A

⊔
A → B. The homotopy is said good (resp. very good) if the corresponding

cylinder object is.
Proposition 3.1 (DS,4). If A (with the previous notations) is cofibrant, then the left homo-
topy is an equivalence relation on homM(A,B). We note ∼l this relation and πl(hom(A,B))
the set of equivalence classes.

Proposition 3.2 (DS,4). If X is fibrant, then the composition in M induces a map:

πl(hom(A,B))× πl(hom(B,X))→ πl(hom(A,X)) (2)

3.2 Right homotopy
Definition 3.3. Let A be an object of M. One calls path object of A the data of a
composition of morphisms:

A→ PA → A×A (3)
which factors idA × idA and such that the left map is a weak equivalence. It is said :

1. good if PA → A× is a fibration.

2. very good if it is good and A→ PA is an (acyclic) cofibration.
Definition 3.4. Let f : A → B be an arrow of a model category M. A right homotopy
from f to g is the data of a path object of B and a map H : A → PB which factors
f × g : A→ B ×B. The homotopy is said good (resp. very good) if the corresponding path
object is.

One has the same kind of the results as in the case of left homotopy.

3.3 Relationship between left and right homotopies
Proposition 3.3. Let f, g : X → Y morphisms of M.

1. If X is cofibrant an f ∼l g, then f ∼r g.

2. If Y is fibrant and f ∼r g, then f ∼l g.

4 Homotopy category
Definition 4.1. (proposition)[DS,5] From a model category M, one can construct a category
Ho(M) such that.

1. The objects of Ho(M) are those of M

2. For two objects X,Y :

homHo(M)(X,Y ) = πhomMcf
(RQX,RQY ) (4)

where RQX is a fibrant-cofibrant replacement of X, Mcf is the full category of M
spanned by the fibrant-cofibrant objects and π is the projection on homotopy class.

Furthermore there is a functor γ : M→ Ho(M) which is the identity on object and sends a
morphism to "its homotopy class".
Proposition 4.1 (DS,6). A morphism f of M is a weak equivalence iff γ(f) is an isomor-
phism and the functor γ : M→ Ho(M) is a localization of M with respect to W.
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5 Derived functors
Definition 5.1. Let M be a model category and F : M→ C a functor.

1. A left derived functor of F (if it exists) is a pair (LF, t) where LF is a functorHo(M)→
D and t a natural transformation LFγ → F which is universal, ie, for every pair (G, s)
of this type, there exists a unique natural transformation s′ : Gγ → LFγ such that
s = t ◦ s′.

2. A right derived functor is an analogous object.

Proposition 5.1 (DS,9). If one uses the notations of the above definition; if F (f) is an
isomorphism whenever f is a weak equivalence between cofibrant objects, then a left derived
functor of F exists and for every cofibrant objects X in M, the map t(X) : LF (X)→ F (X)
is an isomorphism. Similarly, if F (f) is an isomorphism whenever f is a weak equivalence
between fibrant objects, then a right derived functor of F exists and for every fibrant objects
X in M, the map s(X) : F (X)→ RF (X) is an isomorphism.

Definition 5.2. A total left (right) derived functor of F : M → C, where C is a model
category, is a left (right) derived functor of γC ◦ F .

Example 5.1. Cohomology of sheaves: consider the C− Sh, the category of non-negatively
graded cochains of abelian sheaves on a space X, C −A the category non-negatively graded
cochains of abelian groups (both category with the model structure defined above). Consider
also the functor Γ : C− Sh → C − A which corresponds in each degree to the evaluation
of the sheaf on X. The total right derived functor RtΓ exists. Furthermore, if F is a sheaf
consider as a cochain of sheaves concentrated in degree 0 and if I is a fibrant replacement
of F (in C− Sh), then RtΓ(F)RtΓ(I) ' I in Ho(C − A). This is the same notion as the
right derived functor in the context of sheaves cohomology.

Proposition 5.2 (DS,9). Let M and D be model categories and F : M 
 D : G a pair of
djoint functors.

1. If F preserves cofibrations and G preserves fibrations, then the total derived functors
LF and RG exist and are adjoint.

2. If in addition, for every cofibrant object A of M and fibrant object of D B, a map
A → G(B) is a weak equivalence iff its adjoint F (A) → X is aweak equivalence, then
LF and RG are equivalences of categories.

Example 5.2. The adjunction sSet 
 Top satisfy the conditions and leads to the equivalence
Ho(Top) ' Ho(sSet)

6 Homotopy limits and colimits
[TV, 2.4]

Definition 6.1. Let C be a (usual) category, and W a sub-category. If I is a (small)
category, let CI be the category of functors I → C. Then let WI be the sub-category of CI

spanned by the natural transformations whom morphisms on objects are in W. Then, the
constant functor C → CI induces a functor C → CI [(WI)−1] which sends the morphisms of
W to isomorphisms. So, it can be factorized by the projection C→ C[W−1] and the functor:

c : C[W−1]→ CI [(WI)−1] (5)

1. The homotopy limit of an object A de CI [(WI)−1] is (if it exists) the data of an object
holimI(A) of C[W−1] and isomorphisms of functors:

homC[W−1](., holimI(A)) ' homCI [(WI )−1](c(.), A). (6)

The naturality in A of this isomorphism of functors makes us define the homotopy
limit (if it exists) as the right adjoint of c.

2. One defines hocolim in an analogous way. The functor hocolim is left adjoint to c (if
it exists).

4



7 Mapping spaces
The localization of a model category glues together homotopical maps: therefore one looses
the higher homotopical data. The mapping spaces are an attempt to built it.

This section relies on the article "Function complexes in Homotopical Algebra" by W.G.
Dwyer and D. Kan.

Let M be a model category, and W a the subcategory of weak equivalence.

Definition 7.1. Let Y an object of M . A simplicial resolution of Y is a simplicial object
over M noted Y∗ together with a weak equivalence Y → Y0 such that

1. the object Y0 is fibrant

2. all faces maps in Y∗ are acyclic fibrations. Hence, all the objects Yn are fibrants.

3. Let (d∗, Yn) the diagram:

(a) for every 0 ≤ i ≤ n+ 1, a copy (di;Yn) of Yn

(b) for every 0 ≤ i < j ≤ n+ 1, a copy (didj , Yn−1) of Yn−1

(c) pair of maps: (dj , Yn) → (didj , Yn−1) ← (dj , Yn). These arrows are acyclic
fibrations.

Then the map Yn+1 → (d∗, Yn) is a fibration.

Definition 7.2. A simplicial resolution Y∗ of Y can be viewed as a simplicial object over
M together with a simplicial map i : Y → Y∗ (here Y represents the constant simplicial
object over M made from the object Y ), and having some further properties. Then one can
define a map of simplicial resolutions of Y , f : Y∗ → Y ′∗ as a simplicial map which makes
the following diagram commute:

Y //

��

Y ′∗

Y

??

Definition 7.3. The notion of cosimplicial resolution and map between cosimplicial res-
olutions are defined dually from the notion of simplicial resolution and map of simplicial
resolutions.

With these notions, one can try to state the definition:

Definition 7.4. homM (X∗, Y∗) has an obvious structure of bisimplicial set for X∗ a cosim-
plicial resolution ofX and Y∗ a simplicial resolution of Y . The homotopy complex or mapping
space of (X,Y ) is then defined (up to homotopy) as map(X,Y ) := diaghomM (X∗, Y∗) .

However, one needs some machinery to make this definitions coherent. Indeed one has to
check that the homotopy can be defined for two objects (X,Y ) and that it does not depens
on the resolutions chosed. The first requirement is answered by:

Proposition 7.1. Every object of a model category M has simplicial and a cosimplicial
resolutions.

Proof. Let’s show the result by induction for a simplicial resolution. One adds a require-
ment of this simplicial resolution (usefull for the construction): the degeneracies are acyclic
cofibrations.

• If ∗ is the final object ofM , then Y → ∗ can be factorized through : Y �
� ∼ // Y0 // // ∗ .

Then one got the fibrant element Y0 and an acyclic fibration from Y to Y0.

• If one has the elements Yi for 0 ≤ i ≤ n with the corresponding faces and degenera-
cies maps which are respectively acyclic fibrations and acyclic cofibrations, then one
defines (s∗, Yn) as the direct limits of the diagram made of copies (si, Yn) of Yn for
0 ≤ i ≤ n and copies (sisj , Yn−1) of Yn−1 for 0 ≤ i < j ≤ n together with maps
(si, Yn) (sisj , Yn−1)_?sj−1

oo � � si // (sj , Yn) . Then one has easily a weak equivalences

(s∗, Yn) ∼ // (d∗, Yn) which can be factorized through (s∗, Yn) �
� ∼ // Y n+ 1 ∼ // // (d∗, Yn) .
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The cosimplicial resolution is created dually.

Remark 7.1. In the proof we had added a property: the map Y → Y0 and the degeneracies
are acyclic cofibrations. Such a simplicial resolution is called cofibrant. We define dually
the notion of fibrant cosimplicial resolution. The proof of the previous property shows that
every object of M has cofibrant simplicial resolutions and fibrant cosimplicial resolutions.

The next lemma uses this last notion to make links between the various homotopy func-
tion complexes one can construct.
Lemma 7.1. [DK3, 3, 6.9and6.10]

1. Let Y∗ and Y ′∗ be simplicial resolutions of Y . Then, if Y ′∗ is cofibrant, there exists a
map of resolutions Y∗ → Y ′∗ .

2. Let X∗ and X ′∗ be cosimplicial resolutions of X. Then, if X ′∗ is fibrant, there exists
a map of resolutions X ′∗ → X∗

Sketch of proof. The maps are constructed by induction

Proposition 7.2. [DK3, 4, 17.3.4] If f : X ′∗ → X∗ is a map of cosimplicial resolutions of
X and g : Y∗ → Y ′∗ is a map of simplicial resolutions of Y , then they induced a map of
simplicial set diaghomM (X∗, Y∗) → diaghomM (X ′∗, Y ′∗) which is a weak homotopy equiv-
alence

Corollary 7.1. One can find a finite string of weak homotopy equivalences between two
homotopy function complexes constructed for the pair of objects (X,Y ). Hence, the homotopy
function complex is unique up to weak homotopy equivalence.

The next proposition allows us to link the homotopy function complexes to the usual
notion of homotopy in a model category:
Proposition 7.3. 1. If X∗ is cosimplicial resolution in M , then X0 tX0 → X1 → X0

is a cylinder object of X0.

2. If Y∗ is simplicial resolution in M , then Y0 → Y1 → Y0 × Y0 is a path object of Y0.

Then, a cosimplicial resolution of X is a sort of "higher cylinder objects" collection for
a cofibrant approxiation of X. Dually, a simplicial resolution of Y is a sort of "higher path
objects" collection for a fibrant approximation of Y .

8 Bousfield localization
Let M be a model category and S a set of arrows. If we want to localize Ho(M) with respect
to S, one solution which does not loose the higher homotopical data is to work directly on
M by growing the set of weak equivalences. It is what the Bousfield localization do.
Definition 8.1. A left localization of M with respect to S is a pair (LSM, j) universal
among the pairs (N, φ) where N is a model category and φ : M→ N is a left Quillen functor
(preserves cofibrations and acyclic cofibrations left adjoint of an adjunction) such that its
total derived functor sends S to isomorphisms.

We will see in what cases we can build a left Bousfield localization.
Definition 8.2. An object A of M is (left) S-local if it is fibrant and for every X → Y , the
induced simplicial morphism Map(Y,A)→Map(X,A) is a weak homotopy equivalence.
A morphism f : A→ B of M is a (left) S-local equivalence if for every S-local object X, the
induced map Map(B,X)→Map(A,X) is a weak homotopy equivalence.
Definition 8.3. A left Bousfield localization of M with respect to S is the data of a model
structure LSM on the underlying category of M such that:

1. the weak equivelences are the S-local equivalences

2. the cofibrations are the cofibrations of M
In that case, the canonical functor M → LSM is left Quillen and it is a left localization of
M with respect to S [Hi3,3.3.19].
Proposition 8.1 (Hi,4.1.1). A left proper cellular model category has left Bousfield local-
izations which is left proper cellular, whom fibrant objects are the S-local objects.
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